
Chapter 2

Induction

2.1 Introducing induction

Suppose there is an infinite line of people, numbered 1, 2, 3, . . ., and every person
has been instructed as follows: “If something is whispered in your ear, go ahead
and whisper the same thing to the person in front of you (the one with the greater
number)”. Now, what will happen if we whisper a secret to person 1? 1 will tell it to
2, 2 will tell it to 3, 3 will tell it to 4, and ... everybody is going to learn the secret!
Similarly, suppose we align an infinite number of dominoes, such that if some domino
falls, the next one in line falls as well. What happens when we knock down the first
domino? That’s right, they all fall. This intuition is formalized in the principle of
mathematical induction:

Induction Principle: Given a set A of positive integers, suppose the following
hold:

• 1 ∈ A.

• If k ∈ A then k + 1 ∈ A.

Then all positive integers belong to A. (That is, A = N+.)

Here are two simple proofs that use the induction principle:

Theorem 2.1.1. Every positive integer is either even or odd.

Proof. By definition, we are required to prove that for every n ∈ N+, there exists
some l ∈ N, such that either n = 2l or n = 2l + 1. The proof proceeds by induction.
The claim holds for n = 1, since 1 = 2 · 0 + 1. Suppose the claim holds for n = k.
That is, there exists l ∈ N, such that k = 2l or k = 2l + 1. We prove that the claim
holds for n = k + 1. Indeed, if k = 2l then k + 1 = 2l + 1, and if k = 2l + 1 then
k + 1 = 2(l + 1). Thus the claim holds for n = k + 1 and the proof by induction is
complete.

Theorem 2.1.2. Every positive integer power of 3 is odd.
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Proof. By definition, we are required to prove that for every n ∈ N+, it holds that
3n = 2l + 1, for some l ∈ N. The proof proceeds by induction. For n = 1, we have
3 = 2 · 1 + 1, so the claim holds. Suppose the claim holds for k, so 3k = 2l + 1, for
some l ∈ N. Then

3k+1 = 3 · 3k = 3(2l + 1) = 2(3l + 1) + 1,

and the claim also holds for k + 1. The proof by induction is complete.

Proof tip: If you don’t know how to get a proof started, look to the definitions,
and state formally and precisely what it is that you need to prove. It might not be
obvious how to prove that “Every positive integer power of 3 is odd”, but a bit easier
to proceed with proving that “for every n ∈ N+, it holds that 3n = 2l + 1, for some
l ∈ N.” If you need to prove an implication (that is, a claim of the form “if . . . then
. . .”), then formally state all the assumptions as well as what you need to prove that
they imply. Comparing the two might lead to some insight.

Proof technique: Induction. The induction principle is often used when we are
trying to prove that some claim holds for all positive integers. As the above two proofs
illustrate, when we use induction we do not need to explicitly refer to the set A from
the statement of the induction principle. Generally, this set is the set of numbers for
which the claim that we are trying to prove holds. In the first proof, it was the set of
numbers n that are either even or odd. In the second proof, it was the set of numbers
n for which 3n is odd. Suppose we want to show that some claim holds for all positive
integers. Here is a general template for proving this by induction:

(a) State the method of proof. For example, “The proof proceeds by induction.”

(b) Prove the “induction basis”. That is, prove that the number 1 satisfies the
claim. (This step is often easy, but is crucially important, and should never be
omitted!)

(c) Assume the “induction hypothesis”. That is, state the assumption that the
claim holds for some positive integer k.

(d) Prove, using the induction hypothesis, that the claim holds for k+1. The proof
should consist of a chain of clear statements, each logically following from the
previous ones combined with our shared knowledge base. The final statement
in the chain should state that the claim holds for k + 1.

(e) Conclude the proof. For example, “This completes the proof by induction.”

Theorem 2.1.3. For every positive integer n,

1 + 2 + · · ·+ n =
n(n + 1)

2
.
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Proof. The proof proceeds by induction. For n = 1, we have 1 = 1·2
2

and the claim
holds. Assume 1 + 2 + · · ·+ k = k(k + 1)/2. Then

1+2+ · · ·+k +(k +1) =
k(k + 1)

2
+(k +1) =

k(k + 1) + 2(k + 1)

2
=

(k + 1)(k + 2)

2
,

which proves the claim for k + 1 and completes the proof by induction.

Sigma and Pi notations. Just as the
⋃

symbol can be used to compactly express
the union of many sets, the

∑
symbol can be used to express summations. For

example,

1 + 2 + · · ·+ n =
n∑

i=1

i =
∑

1≤i≤n

i =
∑

i∈{x : 1≤x≤n}

i.

You should not assume just because
∑

appears that there is an actual summation,
or that there are any summands at all. For example, when n = 1,

∑n
i=1 i = 1, and

when n ≤ 0,
∑n

i=1 i = 0 !
Similarly, products can be expressed using the

∏
symbol, as in

20 · 21 · 22 · ... · 2n =
n∏

i=0

2i.

One thing to be aware of is that the empty product is defined to equal 1, so

1∏
i=3

i =
∏

i ∈ {2, 4, 10, 14}
i is odd

i = 1.

A single
∑

or
∏

symbol can also be used to describe the sum or product over
more than one variable. For example,

∑
1≤i,j≤n

(i + j) =
n∑

i=1

n∑
j=1

(i + j).

2.2 Strong induction

Suppose that a property P holds for n = 1, and the following is true: If P holds for
all integers between 1 and k, then it also holds for k + 1. Under these assumptions,
P holds for all positive integers. This is the principle of strong induction. It differs
from regular induction in that we can assume something stronger to derive the same
conclusion. Namely, we can assume not only that P holds for k, but that in fact P
holds for all positive integers up to k. We state the strong induction principle more
formally, and then demonstrate its usefulness.
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Strong Induction Principle: Given a set A of positive integers, suppose the fol-
lowing hold:

• 1 ∈ A.

• If {1, 2, . . . , k} ⊆ A then k + 1 ∈ A.

Then all positive integers belong to A.

Definition. An integer p > 1 is said to be prime if the only positive divisors of p
are 1 and p itself.

Theorem 2.2.1. Every positive integer greater than 1 can be expressed as a product
of primes.

Proof. The proof proceeds by strong induction. Since 2 is a prime, the claim holds for
2. (Note how the induction basis in this case is 2, not 1, since we are proving a claim
concerning all integers equal to or greater than 2.) Now assume the claim holds for all
integers between 2 and k. If k+1 is a prime then the claim trivially holds. Otherwise
it has a positive divisor a other than 1 and k + 1 itself. Thus, k + 1 = a · b, with
2 ≤ a, b ≤ k. Both a and b can be expressed as products of primes by the induction
hypothesis. Their product can therefore also be thus expressed. This completes the
proof by strong induction.

The versatility of induction. We have seen in the proof of Theorem 2.2.1 that
if we want to prove a statement concerning all positive integers equal to or greater
than 2, we can use induction (or strong induction) with 2 as the base case. This holds
for any positive integer in the place of 2. In fact, induction is an extremely versatile
technique. For example, if we want to prove a property of all even positive integers,
we can use 2 as the base case, and then prove that if the property holds for k, it will
also hold for k + 2. Generally we will just assume that such variations are ok, there
is no need to state a separate induction principle for each of these cases.

Fairly subtle variations of induction are often used. For example, if we can prove
that a statement holds for 1 and 2, and that if it holds for k it will also hold for
k + 2, we can safely conclude that the statement holds for all the positive integers.
However, don’t get carried away with variations that are simply incorrect, like using
1 as a base case, proving that if a statement holds for k then it also holds for k + 2,
and then claiming its validity for all positive integers.

2.3 Why is the induction principle true?

Some of you might be surprised by the title question. Isn’t it obvious? I mean, you
know, the dominoes are aligned, you knock one down, they all fall. End of story.
Right? Not quite.

“Common sense” often misleads us. You probably noticed this in daily life, and
you’re going to notice it a whole lot if you get into mathematics. Think of optical
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illusions: we see, very clearly, what isn’t really there. Our mind plays tricks on us too,
just like our eyes sometimes do. So in mathematics, we are after proving everything.
To be mathematically correct, every statement has to logically follow from previously
known ones. So how do we prove the induction principle?

The answer lies in the previous paragraph. We said that every statement has
to logically follow from other statements that we have proven previously. But this
cannot go on forever, do you see? We have to start from some statements that we
assume to be true. Such statements are called axioms. For example, why is it true
that for any two natural numbers a, b, c, it holds that a+(b+c) = (a+b)+c? Because
we assume it to be so, in order to build up the rest of mathematics from this and a
small number of other such axioms.

This is also what we do with the induction principle: We accept it as an axiom.
And if we accept the induction principle, strong induction can be proved from it, as
you’ll discover in the homework.
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